AK1221 3500MHz High Lineartity Mixer

1. Overview

The AK1221 is high linearity mixer. RF and Lo frequency range coverage is from 700 to 3500 MHz and IF coverage is from 20 to 1000 MHz . The RF input provides single-ended 50Ω interface. Lo ports are 50Ω matched and complementary input should be decoupled to the ground. IF output ports are differential open drain outputs. The linearity and power consumption performances can be optimized by the resistance connected to the BIAS Pin.

2. Features

\square Operating Frequency: $\quad 700 \mathrm{MHz}$ to 3500 MHz
$\square \quad$ Linearity vs. Power selectable architecture
Power Consumption: 45mA, IIP3: +25dBm, Gain: -0.5dB, NF: 14dB
$\square \quad$ Lo input level:
$0 \mathrm{dBm} \pm 5 \mathrm{~dB}$
ㅁ Operating Supply Voltage:
4.75 to 5.25 V
$\square \quad$ Package: $\quad 16$ pin UQFN $(0.5 \mathrm{~mm}$ pitch, $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 0.60 \mathrm{~mm})$
\square Operating Temperature Range:
-40 to $85^{\circ} \mathrm{C}$

3. Applications

- Cellular BTS / Repeater
$\square \quad$ Two-way Radios (PMR/LMR)

4. Table contents

\qquad 1
\qquad
3. Applications 1
\qquad
5. Block Diagram 3
6. System Diagram 4
7. Pin Functional Description
8. Absolute Maximum Ratings __ 7
9. Recommended Operating Range ___ 7
\qquad
11. Typical Performance__ 9
12. Typical Evaluation Board Schematic 16
\qquad
14. Application Information 19
\qquad
16. Marking 25

5. Block Diagram

Figure 1. Block Diagram

6. System Diagram

Figure 2. System Diagram

7. Pin Functional Description

Table 1 Pin Function

No.	Name	I/O	Pin Functions	Remarks
1	RFIN	AI	RF Input	Connecting an inductor between this pin and ground.
2	VSS	G	Ground pin	
3	VSS	G	Ground pin	
4	LOINN	AI	Lo Input Negative	
5	LOINP	AI	Lo Input Positive	
6	VDD	P	Power Supply	
7	VDD	P	Power Supply	
8	VDD	P	Power Supply	This pin is open drain output.
9	VDD	P	Power Supply	It needs power feeding via an inductor.
10	BIAS	AIO	Resistance pin for current	Connecting a resistor between this pin and ground.
11	IFOUTN	AO	IF Output Negative	This pin is open drain output.
12	IFOUTP	AO	IF Output Positive	
13	VSS	G	Ground pin	
14	VSS	G	Ground pin	
15	VSS	G	Ground pin	Ground pin
16	VSS	G	Greeding via an inductor.	

Note) The exposed pad at the center of the backside should be connected to ground.

$\mathrm{AI}:$ Analog input pin	AO : Analog output pin	AIO : Analog I/O pin
$\mathrm{P}:$ Power supply pin	$\mathrm{G}:$ Ground pin	

Figure 3. Package Pin Layout

8. Absolute Maximum Ratings

Table 2 Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Remarks
Supply Voltage	VDD	-0.3	5.5	V	
RF Input Power	RFPOW		12	dBm	
LO Input Power	LOPOW		12	dBm	
Storage Temperature	Tstg	-55	125	${ }^{\circ} \mathrm{C}$	

Exceeding these maximum ratings may result in damage to the AK1221. Normal operation is not guaranteed at these extremes.

9. Recommended Operating Range

Table 3 Recommended Operating Range

Parameter	Symbol	Min.	Typ.	Max.	Unit	Remarks
Operating Temperature	Ta	-40		85	${ }^{\circ} \mathrm{C}$	
Supply Voltage	VDD	4.75	5	5.25	V	

The specifications are applicable within the recommended operating range (supply voltage/operating temperature).

10. Electrical Characteristics

1. Analog Circuit Characteristics

Unless otherwise noted IF output $=150 \mathrm{MHz}$, Lo Input Level $=-5 \mathrm{dBm}$ to +5 dBm , Output Load Resistor (RLoad) $=680 \Omega$, VDD $=4.75$ to 5.25 V , $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Parameter		Min.	Typ.	Max.	Unit	Remarks
RF Input Frequency		700		3500	MHz	
Lo Input Frequency		700		3500	MHz	
IF output Frequency		20		1000	MHz	
Lo Input Power		-5	0	+5	dBm	
Current Adjustment Resistor(BIAS)		22		56	k Ω	
IDD	BIAS $=22 \mathrm{k} \Omega$		64	87	mA	The total current of VDD pin, IFOUTP pin and IFOUTN pin.
	BIAS $=33 \mathrm{k} \Omega$		45	64	mA	
	BIAS $=56 \mathrm{k} \Omega$		30	44	mA	
RFIN= $\mathbf{2 5 0 0 M H z}$, Current Adjustment Resistor $=33 \mathrm{k} \Omega$						
Conversion Gain		-2.5	-0.5	1.5	dB	
SSB Noise Figure			14	16.5	dB	Design guarantee value
IP1dB		7	10		dBm	
IIP3		21	25		dBm	Design guarantee value

11. Typical Performance

Unless otherwise noted, RF input $=2500 \mathrm{MHz}$, Lo input $=2350 \mathrm{MHz}$, IF output $=150 \mathrm{MHz}$, Output Load Resistor (RLoad) $=680 \Omega$

1. Current Adjustment Resistor vs. IIP, NF, P1dB, Gain, IDD

Figure 4. Current Adjustment Resistor vs. IIP3, NF, P1dB, Gain, IDD
Note) A resistor with 5\% tolerance are used.
2. Over temperature vs. IIP3, NF, P1dB, Gain, IDD

Figure 5. Over temperature vs. IIP3, NF, IP1dB, Gain, IDD
3. Supply voltage vs. IIP3, NF, P1dB, Gain, IDD

Resistance for current adjustment
_

$=$| 22kohm |
| :--- |
| $33 k o h m$ |
| $56 k o h m$ |

Figure 6. Supply voltage vs. IIP3, NF, IP1dB, Gain, IDD
4. RF input frequency vs. IIP3, NF, Gain

Resistance for current adjustment

Figure 7. RF input frequency vs. IIP3, NF, Gain
5. IF input frequency vs. IIP3, NF, Gain

Resistance for current adjustment
_

$=$| 22kohm |
| :--- |
| 33kohm |
| $56 k o h m$ |

$=-=\quad$

Figure 8. IF input frequency vs. IIP3, NF, Gain
6. Lo input power vs. IIP3, NF, Gain

Resistance for current adjustment

Figure 9. Lo input power vs. IIP3, NF, Gain
7. Output Load Resistor (RLoad) vs. IIP3, NF, Gain

Resistance for current adjustment
_

$=$| 22kohm |
| :--- |
| $33 k o h m$ |

$-=-\quad$
$56 k o h m$

Figure 10. Output Load Resistor(RLoad) vs. IIP3, NF, Gain

8. Leakage

RFIN $=2500 \mathrm{MHz},-20 \mathrm{dBm}$, LO input $=2350 \mathrm{MHz}, 0 \mathrm{dBm}$, RLoad= $=680 \Omega, \mathrm{Ta}=25^{\circ} \mathrm{C}$ VDD $=5 \mathrm{~V}$

Parameter	BIAS	Typ.	Unit
RF - LO Leakage	$22 \mathrm{k} \Omega$	-36	dBc
	$56 \mathrm{k} \Omega$	-36	dBc
RF - IF Leakage	$22 \mathrm{k} \Omega$	-61	dBc
	$56 \mathrm{k} \Omega$	-57	dBc
LO - RF Leakage	$22 \mathrm{k} \Omega$	-44	dBc
	$56 \mathrm{k} \Omega$	-44	dBc
	$22 \mathrm{k} \Omega$	-58	dBc
	$56 \mathrm{k} \Omega$	-66	dBc

12. Typical Evaluation Board Schematic

1. Typical Evaluation Board Schematic

Figure 11. Typical Evaluation Board Schematic

Note 1) The open drain output needs power feeding via a inductor. (IFOUTP pin and IFOUTN pin)
Note 2) It is necessary to adjust impedance matching as to its setting frequency. (RF input and IF output)
2. Example of impedance matching

2-1 RFIN
RF Input

Frequency[MHz]	C1[pF]	C2[pF]	$\mathrm{L} 1[\mathrm{nH}]$	L2[nH]	Impedance[ohm]
700	none	20	none	39	$42.9-\mathrm{j} 5.4$
2500	39	2.2	1.8	10	$61.2-\mathrm{j} 12.8$
3500	39	1.0	1.0	10	$40.7-\mathrm{j} 5.1$

2-2 IFOUT

Frequency [MHz]	R1 [ohm]	C1 [pF]	$\mathrm{C} 2[\mathrm{pF}]$	L1 [nH]	L2 [nH]	Impedance[ohm]
20	680	15	none	$1200{ }^{* 1}$	$1200{ }^{* 1}$	56.6 - j4.5
150	680	1	None	180 *2	$180{ }^{\text {*2 }}$	$52.6+\mathrm{j} 1.6$
200	680	none	none	150 *2	150 *2	47.0-j11.9
500	440	0.2	1.8	$43{ }^{* 2}$	$43{ }^{* 2}$	49.2 - j2.3
750	440	0.3	1.3	$20{ }^{*}$	$20{ }^{\text {*2 }}$	$51.7+$ j3.4
1000	440	0.1	1.2	$12^{* 2}$	$12^{* 2}$	53.2 - j4.9

*1)Murata LQW21A series
*2)Murata LQW18A series

2 - 3 LOINP/LOINN

13. LSI Interface Schematic

No.	Name	I/O	Function
1	RFIN	1	RF Input pin
4	LOINN	1	Lo Input pins
5	LOINP		
10	BIAS	I/O	Analog I/O pin
11	IFOUTN	O	IF Output pins
12	IFOUTP		

-Impedance matching network with LC

Figure 12. Impedance matching network with LC

Impedance matching network with LC is shown in Figure 12. AK1221 has open drain outputs, so RL1 + RL2 is output load resistance. C11 and L11 compose lowpass filter. C12 and L12 are for highpass filter. C13 is DC blocking capacitor and L13 is RF choke. IFOUTP and IFOUTN pins need power feeding via L11, L12 and L13.

The differential voltage from IFOUTP/N can be converted to a single-ended by L11, L12, C11 and C12 properly. The differential impedance (RL1 + RL2) is converted to single-ended output terminating impedance Ro.

L11, C11, L12 and C12 are calculated as below. fout is IF output frequency.
$C_{11}=C_{12}=\frac{1}{2 \pi * f_{\mathrm{OUT}} * \sqrt{\left(R_{\mathrm{L} 1}+R_{\mathrm{L} 2}\right) * R_{\mathrm{O}}}}$
$L_{11}=L_{12}=\frac{\sqrt{\left(R_{\mathrm{L} 1}+R_{\mathrm{L} 2}\right) * R_{\mathrm{O}}}}{2 \pi^{*} f_{\mathrm{OUT}}}$

For example, in the case of IF Output $=50 \mathrm{MHz}$, Output Load Resistor (Rload) $=660 \Omega$ in 50Ω interface, L11, C11, L12 and C12 are calculated as below.
$C_{11}=C_{12}=\frac{1}{2 \pi *\left(150 * 10^{\wedge} 6\right) * \sqrt{660 * 50}}=5.84 \mathrm{pF}$
$L_{11}=L_{12}=\frac{\sqrt{660 * 50}}{2 \pi *\left(150 * 10^{\wedge} 6\right)}=193 \mathrm{nH}$

L13 and C13 should be large enough not to affect the impedance at IF output frequency. In some cases the impedance matching can be optimized by L13 and C13.

For example, in the case of IF Output $=150 \mathrm{MHz}$, Output Load Resistor (Rload) $=660 \Omega$ in 50Ω interface, it is recommended to choose 2200 nH and 1000 pF as L13 and C13. If any correction is needed, it can be adjusted by reducing the value of L13 and C13.

In some cases L14 can be selected to resonate with IF output capacitance. The typical differential output impedances for several frequencies are below. In the case of IF Output $=150 \mathrm{MHz}$, it is recommended to choose 1000 nH as L14.

	Differential Output Impedance		Matching Element
IF Output Frequency [MHz]	R[ohm]	j X[ohm]	L14 [nH]
20	2300	$-J 4083$	OPEN
50	711	$-J 2448$	OPEN
70	419	$-J 1873$	OPEN
100	244	$-J 1420$	2200
150	109	- J932	1000
180	77	$-J 788$	750
200	62	- J706	560
250	38	$-J 566$	360
300	28	- J470	240
400	16	$-J 346$	150
500	15	$-J 270$	82
600	13	$-J 223$	62
700	10	$-J 188$	43
800	9	- J159	33
900	7	$-J 138$	24

These calculated values are approximation. In some cases, some correction is needed due to the effect of parasitic capacitance of external parts or/and PCBs. The impedance matching network components should be decided through enough evaluation on AK1221.

Typical Performance using impedance matching network with LC is below. RF Input $=2500 \mathrm{MHz}$, IF Output $=$ 150 MHz , LO Input $=2350 \mathrm{MHz}$, Output Load Resistor (Rload) $=660 \Omega$, Vdd $=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, LO Input Level $=$ OdBm, current adjustment resistor $=33 \mathrm{k} \Omega$.

Ref.	Value	Size	Part Number
RL1, RL2	330Ω	1005	KOA RK73B1ETTP331
L11, L12	200 nH	1608	Murata LQW18ANR20G00
C11, C12	6 pF	1005	Murata GJM1552C1H6R0DB01
L13	2200 nH	2012	Murata LQW21HN2R2J00
C13	1000 pF	1005	Murata GRM1552C1H102JA01
L14	1000 nH	2012	Murata LQW21HN1R0J00

Parameter	Min. Typ. Max.	Unit
Conversion Gain	-1.1	dB
SSB Noise Figure (NF)	13.8	dB
IP1dB	11.6	dBm
IIP3	24.8	dBm

The phase and amplitude balance is achieved at IF Output frequency by using impedance matching network with LC. The port-to-port leakage is improved with the phase and amplitude balance is achieved at RF, LO, and IF frequency with wide band balun.

- Evaluation Board

Figure 13. AK1221 Evaluation Board (Balun)

Figure 14. AK1221 Evaluation Board Schematic (Balun)

Figure 15. AK1221 Evaluation Board (matching network with LC)

Figure 16. AK1221 Evaluation Board Schematic (matching network with LC)

15. Outer Dimensions

$\%$
∞
+1
∞
1
0
0

Figure 17. Outer Dimensions

Note 1.1 pin marking is only a reference for the 1 pin location on the top of package.

16. Marking

(a) Style

UQFN
(b) Number of pins
(c) 1 pin marking: -
(d) Product number 1221
(e) Date code

Y: Lower 1 digit of calendar year (Year $2012 \rightarrow 2,2013 \rightarrow 3 \ldots$)
WW: Week
L: Lot identification, given to each product lot which is made in a week \rightarrow LOT ID is given in alphabetical order (A, B, C...).

Figure 18. Marking

IMPORTANT NOTICE

0. Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document ("Product"), please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.
1. All information included in this document are provided only to illustrate the operation and application examples of AKM Products. AKM neither makes warranties or representations. with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property righț or any other rights of AKM or any third party with respect to the information in this document. You are fully responsible for use of such information contained in this document in your product design or applications. AKM ASSUMES NO LIABILITY FOR ANY LOSSES INCURRED BY YOU OR THIRD PARTIES ARISING FROM THE USE OF SUCH INFORMATION IN YOUR PRODUCT DESIGN OR APPLICATIONS.
2. The Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or reliability and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact, including but not limited to, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for the above use unless specifically agreed by AKM in writing.
3. Though AKM works continually to improve the Product's quality and reliability, you are responsible for complying with safety standards and for providing adequate designs and safeguards for your hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of the Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption.
4. Do not use or otherwise make available the Product or related technology or any information contained in this document for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). When exporting the Products or related technology or any information contained in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. The Products and related technology may not be used for or incorporated into any products or systems whọse manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
5. Please contact ARM sales representative for details as to environmental matters such as the RoHS compatibility of the Product. Please use the Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. AKM assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.
6. Resale of the Product with provisions different from the statement and/or technical features set forth in this document shall immediately void any warranty granted by AKM for the Product and shall not create or extend in any manner whatsoever, any liability of AKM.
7. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of AKM.

AsahiKASEI

-Related Parts

Part\#	Discription	Comments
Mixer		
AK1220	100MHz 900MHz High Linearity Down Conversion Mixer	IIP3:+22dBm
AK1222	100MHz~900MHz Low Power Down Conversion Mixer	IDD:2.9mA
AK1224	100MHz 900MHz Low Noise, High Liniarity Down Conversion Mixer	NF:8.5dB, IIP3:+18dBm
AK1228	10MHz 2 GHz Up/Down Conversion Mixer	3V Supply, NF:8.5dB
AK1221	$0.7 \mathrm{GHz} \sim 3.5 \mathrm{GHz}$ High Linearity Down Conversion Mixer	IIP3:+25dBm
AK1223	3GHz~8.5GHz High Linearity Down Conversion Mixer	IIP3:+13dB, NF:15dB
PLL Synthesizer		
AK1541	20MHz~600MHz Low Power Fractional-N Synthesizer	IDD: 4.6 mA
AK1542A	$20 \mathrm{MHz} \sim 600 \mathrm{MHz}$ Low Power Integer-N Synthesizer	IDD: 2.2 mA
AK1543	$400 \mathrm{MHz} \sim 1.3 \mathrm{GHz}$ Low Power Fractional-N Synthesizer	IDD: 5.1 mA
AK1544	$400 \mathrm{MHz} \sim 1.3 \mathrm{GHz}$ Low Power Integer-N Synthesizer	IDD: 2.8 mA
AK1590	$60 \mathrm{MHz} \sim 1 \mathrm{GHz}$ Fractional-N Synthesizer	IDD: 2.5 mA
AK1545	$0.5 \mathrm{GHz} \sim 3.5 \mathrm{GHz}$ Integer-N Synthesizer	16-TSSOP
AK1546	$0.5 \mathrm{GHz} \sim 3 \mathrm{GHz}$ Low Phase Noise Integer-N Synthesizer	Normalized C/N:-226dBc/Hz
AK1547	$0.5 \mathrm{GHz} \sim 4 \mathrm{GHz}$ Integer-N Synthesizer	5V Supply
AK1548	$1 \mathrm{GHz} \sim 8 \mathrm{GHz}$ Low Phase Noise Integer-N Synthesizer	Normalized C/N:-226dBc/Hz
IFVGA		
AK1291	100~300MHz Analog Signal Control IF VGA w/ RSSI	Dynamic Range:30dB
integrated VCO		
AK1572	$690 \mathrm{MHz} \sim 4 \mathrm{GHz}$ Down Conversion Mixer with Frac.-N PLL and VCO	IIP3:24dBm, -111dBc/Hz@100kHz
AK1575	$690 \mathrm{MHz} \sim 4 \mathrm{GHz}$ Up Conversion Mixer with Frac.-N PLL and VCO	IIP3:24dBm, -111dBc/Hz@100kHz
IF Reciever (2nd Mixer + IF BPF + FM Detector)		
AK2364	Built-in programmable AGC+BPF, FM detector IC	IFBPF: $\pm 10 \mathrm{kHz} \sim \pm 4.5 \mathrm{kHz}$
AK2365A	Built-in programmable AGC+BPF, IFIC	IFBPF: $\pm 7.5 \mathrm{kHz} \sim \pm 2 \mathrm{kHz}$
Analog BB for PMR/LMR		
AK2345C	CTCSS Filter, Encoder, Decoder	24-VSOP
$\begin{aligned} & \hline \text { AK2360/ } \\ & \text { AK2360A } \end{aligned}$	Inverted frequency($3.376 \mathrm{kHz} / 3.020 \mathrm{kHz}$) scrambler	8-SON
AK2363	MSK Modem/DTMF Receiver	24-QFN
AK2346B	0.3-2.55/3.0kHz Analog audio filter,	24-VSOP
AK2346A	Emphasis, Compandor, scrambler, MSK Modem	24-QFN
AK2347B	0.3-2.55/3.0kHz Analog audio filter	24-VSOP
AK2347A	Emphasis, Compandor, scrambler, CTCSS filter	24-QFN
Function IC		
AK2330	8-bit 8ch Electronic Volume	VREF can be selected for each channel
AK2331	8-bit 4ch Electronic Volume	VREF can be selected for each channel

Asahi Kasei Microdevices Corporation ("AKM") reserves the right to make changes to the information contained in this document without notice. When you consider any use or application of AKM product stipulated in this document, please make inquiries the sales office of AKM or authorized distributors as to current status of the Products.

