Square 0.134" 4-Character 5x5 Dot Matrix Serial Input Dot Addressable Intelligent Display ${ }^{\circledR}$ Devices

Lead (Pb) Free Product - RoHS Compliant

DESCRIPTION

The SCDQ5541X (Yellow), SCDQ5542X (Super-red), SCDQ5543X (Green), and SCDQ5544X (High Efficiency Green) are four digit, dot addressable 5×5 dot matrix, serial input, alphanumeric Intelligent Display devices in a square format. The four digits are packaged in a rugged, high quality, optically transparent, plastic package several mounting options. The SIP Pin for standard display mounting and 90° Bend SIP for side mounting. Additionally, a connector/header configuration is also available for display side mounting.
The on-board CMOS has a 100 bit RAM, one bit associated with one LED, each to generate User Defined Characters. In Power Down Mode, quiescent current is $<50 \mu \mathrm{~A}$.
The SCDQ554XX is designed for work with the serial port of most common microprocessors. Data is transferred into the display through the Serial Data Input (DATA), clocked by the Serial Data Clock (SDCLK), and enabled by the Load Input (LOAD).

FEATURES

- Four 3.40 mm (0.134") 5×5 Dot Matrix Characters in Red, Yellow, Super-red, Green, or High Efficiency Green
- Optimum Display Surface Efficiency (display area to package ratio)
- Square Character Format to Display Data in a Vertical or Horizontal Format
- High Speed Data Input Rate: 5.0 MHz
- ROMless Serial Input, Dot Addressable DisplayIdeal for User Defined Characters
- Built-in Decoders, Multiplexers and LED Drivers
- Readable from 1.8 meters (6 Feet)
- Wide Viewing Angle, $\pm 55^{\circ}$ in X -Axis and Y -Axis
- Attributes:
- 100 Bit RAM for User Defined Characters
- Eight Dimming Levels
- Power Down Model (<250 $\mu \mathrm{W}$)
- Software Clear Function
- Lamp Test
- 3.3 V Capability

SCDQ5541P/Q/R, SCDQ5542P/Q/R, SCDQ5543P/Q/R, SCDQ5544P/Q/R

Ordering Information

Type	Color of Emission	Character Height mm (inch)	Ordering Code
SCDQ5541P	yellow	3.2 (0.134)	Q68100A1472P
SCDQ5542P	super-red		Q68100A1078P
SCDQ5543P	green		Q68100A1473P
SCDQ5544P	high efficiency green		Q68100A1474P
SCDQ5541Q	yellow	3.2 (0.134)	Q68100A1472Q
SCDQ5542Q	super-red		Q68100A1078Q
SCDQ5543Q	green		Q68100A1473Q
SCDQ5544Q	high efficiency green		Q68100A1474Q
SCDQ5541R	yellow	3.2 (0.134)	Q68100A1472R
SCDQ5542R	super-red		Q68100A1078R
SCDQ5543R	green		Q68100A1473R
SCDQ5544R	high efficiency green		Q68100A1474R

SCDQ5541P/Q/R, SCDQ5542P/Q/R, SCDQ5543P/Q/R, SCDQ5544P/Q/R

Maximum Ratings
Operation in excess of any of these conditions may result in permanent damage to this device ($T_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Value	Unit
Operating temperature range	$T_{\text {op }}$	$-40 \ldots+85$	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	$-40 \ldots+100$	${ }^{\circ} \mathrm{C}$
Supply Voltage V_{CC} to GND (non-operating)	V_{CC}	-0.5 to +7.0	V
Input Voltage, any Pin to GND		-0.5 to V_{CC} to 5.5	V
Solder Temperature, Connector only $1.59 \mathrm{~mm}\left(0.063^{\prime}\right)$ below seating plane, $\mathrm{t}<5.0 \mathrm{~s}$	T_{S}	260	${ }^{\circ} \mathrm{C}$
Relative Humidity (non-condensing)		85	$\%$
ESD (100 pF, $1.5 \mathrm{k} \Omega)$	V_{Z}	2.0	kV
Input Current		± 100	mA
Power Dissipation at $85^{\circ} \mathrm{C}$		0.65	W

Optical Characteristics at $25^{\circ} \mathrm{C}$
($V_{\text {CC }}=5.0 \mathrm{~V}$ at 100% brightness level, viewing angle: X axis $\pm 55^{\circ}, \mathrm{Y}$ axis $\pm 65^{\circ}$)

Description	Symbol	Values				Unit
Luminous Intensity (min.)	$I_{\text {Vpeak }}$	1.8	1.8	1.8	2.1	mcd
Character Average (\#displayed all digits) (typ.)		5.4	5.4	5.4	6.4	mcd
Peak Wavelength (typ.)	$\lambda_{\text {peak }}$	583	630	565	568	nm
Dominant Wavelength (typ.)	$\lambda_{\text {dom }}$	585	620	570	574	nm

Notes:

1. Dot to dot intensity matching at 100% brightness is $1.8: 1$.
2. Displays are binned for hue at 2.0 nm intervals.
3. Displays within a given intensity category have an intensity matching of 1.5:1 (max.).

Electrical characteristics (over operating temperature, unless otherwise specified, $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Min.	Typ.	Max.	Units	Conditions
V_{CC}	4.5	-	5.5	V	-
I_{CC} (Power Down Mode)	-	-	5.0	$\mu \mathrm{~A}$	$V_{\mathrm{CC}}=5.0 \mathrm{~V}$, all inputs=$=0 \mathrm{~V}$ or V_{CC}
$I_{\mathrm{CC}}\left(16\right.$ dots on per digit) ${ }^{1)}$	-	100	145	mA	$V_{\mathrm{CC}}=5.0 \mathrm{~V}$, "\#" displayed in all 4 digits at 100% brightness at $25 \times \mathrm{C}$
V_{IH}	3.5	-	-	V	$V_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
V_{IL}	-	-	1.5	V	$V_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V
I_{IH}	-	-	10	$\mu \mathrm{~A}$	$V_{\mathrm{CC}}=V_{\mathrm{IN}}=5.0 \mathrm{~V}$ (all inputs)
I_{IL}	-	-	-10	$\mu \mathrm{~A}$	$V_{\mathrm{CC}}=5.0 \mathrm{~V}, V_{\mathrm{IN}}=0 \mathrm{~V}$ (all inputs)
Internal Mux Frequency	375	768	1086	Hz	-
θ_{ja}	-	65	-	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-

Notes:

1) I_{CC} is an average value, the Peak current is $\frac{5}{3} \times I_{\mathrm{CC}}$
${ }^{2}$) Contact manufacturer for 3.3 volt operation.

Input Circuit

The input resistor/diode network shown below is used for ESD protection and to eliminate substrate latch-up caused by input voltage over/under shoot.
Inputs

Pinout and Pin Definitions

Pin	Function	Definitions
1	LOAD	Low input enables data clocking into 8-bit serial shift register. When LOAD goes high, the contents of 8- bit serial Shift Register will be decoded.
2	SDATA	Serial data input
3	SDCLK	Loads data into the 8-bit serial data register on a low to high transition
4	$V_{\text {CC }}$	Power supply
5	GND	Power supply ground

Device Timing

Write Cycle Timing
(over operating temperature range, $V_{\mathrm{CC}}=\mathrm{V}_{\mathrm{LL}}=4.5 \mathrm{~V}$ to 5.5 V)

Symbol	Description	Min.	Max.	Units
$\mathrm{T}_{\text {LDS }}$	Load Setup Time	50	-	ns
$\mathrm{T}_{\text {DS }}$	Data Setup Time	50	-	ns
$\mathrm{T}_{\text {SDCLK }}$	Clock Period	200	-	ns
$\mathrm{T}_{\text {SDCW }}$ $(\mathrm{HI}$ or LOW $)$	Clock Width	70	-	ns
$\mathrm{T}_{\text {LDH }}$	Load Hold Time	0	-	ns
T_{DH}	Data Hold Time	25	-	ns
$\mathrm{T}_{\text {WR }}$	Total Write Time	2.25	-	$\mu \mathrm{s}$
T_{BL}	Time Between Writes	600	-	ns
$\mathrm{T}_{\text {RST }}$	Reset Active Time	600	-	ns

Notes:

1. $\mathrm{T}_{\mathrm{WR}}=$ Setup Time +8 Clock Times + Hold Times + Time Between Writes.
2. Data is shifted into the display's 8 bit shift register on the positive going edge of the SDCLK.
3. Shift register data is evaluated when Load goes high.

Operation of the SCDQ554XX
The SCDQ554XX display consists of a CMOS IC containing control logic and drivers for four 5×5 characters. These components are assembled in a compact plastic package.
Individual LED dot addressablity allows the user great freedom in creating special characters or mini-icons. The User Definable Character Set examples illustrate 200 different character and symbol possibilities. Each example has the hexadecimal code required to display characters in a horizontal or vertical format. See Figures above, Suggested Display Mounting, for the display positioning. Generally, the contacts should be on the right side of the display for the vertical format and on the top of the display for the horizon tal format.

Character Address, Row, \& Column Data Map

1. Viewed from the LED side of the display with the display in a horizontal position.
2. The row address and column data are typical for all character posi tions. The LED is on when the data bit = 1 and off when the data bit $=0$.

Suggested Display Mounting
90° SIP Connector / Header Packages
90° SIP Connector/Header Packages

The serial data interface provides a highly efficient interconnection between the display and the mother board. The SCDQ554XX requires only three input lines as compared to 15 for an equivalent four character parallel input part.
The on-board CMOS IC is the electronic heart of the display. The IC accepts decoded serial data, which is stored in the internal RAM. Asynchronously the RAM is read by the character multiplexer at a strobe rate that results in a flicker free display. shows the three functional areas of the IC. These include: the input serial data register and control logic, a 100 bits two port RAM, and an internal multiplexer/display driver.

SCDQ Block Diagram

The following explains how to format the serial data to be loaded into the display. The user supplies a string of bit mapped decoded characters. The contents of this string is shown in Figure „Loading Serial Character Data A" (page 8). Figure „Loading Serial Character Data B" (page 8) shows that each character consists of six 8 bit words. The first word encodes the display character location and the succeeding five bytes are row data. The row data represents the status (On, Off) of individual column LEDs. Figure „Loading Serial Character Data C" (page 8) shows that each 8 bit word is formatted to include a three bit Operational Code (OPCODE) defined by bits D7-D5 and five bits (D4-DO) representing Column Data, Character Address, or Control Word Data.
Figure "Loading Serial Character Data D" (page 8) shows the sequence for loading the bytes of data. Bringing the LOAD line low enables the serial register to accept data. The shift action occurs on the low to high transition of the serial data clock (SDCLK). The least significant bit (DO) is loaded first. After eight clock pulses the LOAD line is brought high. With this transition the OPCODE is decoded. The decoded OPCODE directs D4-D0 to be latched in the Character Address register, stored in the RAM as Column data, or latched in the Control
Word register. The control IC requires a minimum 600 ns delay between successive byte loads.
Loading Serial Character Data

$\underbrace{}_{\mathrm{D}}$

The Character Address bits, D4-D0 stored in the Character Address Register and the Column Data Instruction's Row Address bits, D7-D5, direct the Column Data bits, D4-D0 to specific RAM ocation. See the Instruction Set Table for address and data format Figure Writing Co igure "Writing Character 'D' Example (page 9) shows the Row Address for the example character "D" See Figure "Character Address, Row, \& Column Data Map" (page 7) for the dot positioning (Display contacts are at the top of the display).

Column data is written and read asynchronously from the 200 bit RAM. Once loaded the internal oscillator and character multiplexer reads the data from the RAM. These characters are row strobed with column data as shown in Figure „Row Strobe Example (page 10). The character strobe rate is determined by the interna IC's $\div 320$ counter

OPERATION	$\begin{aligned} & \text { D } \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 6 \end{aligned}$	$\begin{aligned} & \text { D } \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathbf{2} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { D } \\ 0 \end{array}$	HEX	DESCRIPTION
CONTROL WORD	1	1	1	1	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~T} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{r} \end{aligned}$	$\begin{array}{\|l} \mathrm{B} \\ \mathrm{r} \end{array}$	F0+X	Select Control Word plus operand See Control Word Format
Power Down Mode	1	1	1	1	1	1	1	1	FF	Power Down Mode-0\% Brightness
SFT CLEAR	1	1	0	0	0	0	0	0	C0	Software Clear
ADDRESS REGISTER CHR ADRS 0-3	1	0	1	0	0	0	0	0	A0	Select Digit Address 0
	1	0	1	0	0	0	0	1	A1	Select Digit Address 1
	1	0	1	0	0	0	1	0	A2	Select Digit Address 2
	1	0	1	0	0	0	1	1	A3	Select Digit Address 3
COLUMN DATA	0	0	0	$\begin{aligned} & \mathrm{D} \\ & 4 \end{aligned}$	$\begin{aligned} & D \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 0 \end{aligned}$	00+X	Row 0 D4-D0=Column Data
	0	0	1	$\begin{aligned} & \mathrm{D} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \mathrm{D} \\ 0 \end{array}$	$20+X$	Row 1 D4-D0=Column Data
	0	1	0	$\begin{aligned} & \mathrm{D} \\ & 4 \end{aligned}$	$\begin{array}{\|l} \mathrm{D} \\ 3 \end{array}$	$\begin{aligned} & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 1 \end{aligned}$	$\begin{array}{\|l} \mathrm{D} \\ 0 \end{array}$	$40+X$	Row 2 D4-D0=Column Data
	0	1	1	$\begin{aligned} & \mathrm{D} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 0 \end{aligned}$	$60+X$	Row 3 D4-D0=Column Data
	1	0	0	$\begin{aligned} & \mathrm{D} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & 0 \end{aligned}$	$80+X$	Row 4 D4-D0=Column Data

Row data is written to the character address contained in the Character Address Register.

Writing Character "D" Example

	Op code			Column Data							Hex
	D7	D6	D5	D4	D3	D2	D1	D0			
C0	C1	C2	C3	C4							
Row 0	0	0	0	1	1	1	1	0	1E		
Row 1	0	0	1	1	0	0	0	1	31		
Row 2	0	1	0	1	0	0	0	1	51		
Row 3	0	1	1	1	0	0	0	1	71		
Row 4	1	0	0	1	1	1	1	0	$9 E$		

Row and Column Locations for a Character "D"

Row Strobe Example

The user can activate four Control functions. These include: LED Brightness Level, Lamp Test, IC Power Down, or Display Clear. OPCODEs and five bit words are used to initiate these functions. The OPCODEs and Control Words for the Character Address and Loading Column Data are shown in Instruction Set Table.

The user can select seven specific LED brightness levels. These brightness levels (in percentages of full brightness of the display) include: 100\% (FOHEX), 53\% (F1HEX), 40\% (F2HEX), 27\%
(F3HEX), 20\% (F4HEX), 13\% (F5HEX), and 6.6\% (F6HEX). The brightness levels are controlled by changing the duty factor of the row strobe pulse.

Op codeD7 D6 D5			Control Word					Hex	Operation Level
			D4	D3	D2	D1	D0		
1	1	1	1	0	0	0	0	F0	100\%
1	1	1	1	0	0	0	1	F1	53\%
1	1	1	1	0	0	1	0	F2	40\%
1	1	1	1	0	0	1	1	F3	27\%
1	1	1	1	0	1	0	0	F4	20\%
1	1	1	1	0	1	0	1	F5	13\%
1	1	1	1	0	1	1	0	F6	6.6\%

The SCDQ554X offers a unique Display Power Down feature which reduces I_{CC} to less than $50 \mu \mathrm{~A}$. When FFHEX is loaded the display is set to 0% brightness and the internal multiplex clock is stopped. When in the Power Down mode data may still be written into the RAM. The display is reactivated by loading a new rightness Level Control Word into the display

Power Down

Op code		Control Word						
D7	D6	D5	D4	D3	D2	D1	D0	Hex
1	1	1	1	1	1	1	1	FF

The Lamp Test is enabled by loading F8HEX into the serial shift register. This Control Word sets all of the LEDs to a 53% brightness level. Operation of the Lamp Test has no affect on the RAM and is cleared by loading a Brightness Control Word.

Op code			Control Word					Hex	Operation Level
D7	D6	D5	D4	D3	D2	D1	D0		
1	1	1	1	0	B	B	B		Lamp Test (OFF)
1	1	1	1	1	0	0	0	F8	Lamp Test (ON)

The Software Clear (COHEX) clears the Address Register and the RAM. The display is blanked and the Character Address Register will be set to Character 0. The internal counter and the Control Word Register are unaffected. The Software Clear will remain active until the next data input cycle is initiated.

Software Clear

Op code			Control Word					Hex	Operation Level
D7	D6	D5	D4	D3	D2	D1	D0		
1	1	0	0	0	0	0	0	C0	CLEAR

Electrical \& Mechanical Considerations

Interconnect Considerations
Optimum product performance can be had when the following electrical and mechanical recommendations are adopted. The SCDQ554XX's IC is constructed in a high speed CMOS process, consequently high speed noise on the SERIAL DATA, SERIAL DATA CLOCK, and LOAD lines may cause incorrect data to be written into the serial shift register. Adhere to transmission line termination procedures when using fast line drivers and long cables ($>10 \mathrm{~cm}$)
Good digital grounds (pin 1) and power supply decoupling (pin 2) will insure that $I_{\mathrm{CC}}(<350 \mathrm{~mA}$ peak) switching currents do not generate localized ground bounce. Therefore it is recommended that each display package use a $0.1 \mu \mathrm{~F}$ and $20 \mu \mathrm{~F}$ capacitor between V_{CC} and ground.

SCDQ5541P/Q/R, SCDQ5542P/Q/R, SCDQ5543P/Q/R, SCDQ5544P/Q/R

ESD Protection

The input protection structure of the SCDQ554XX provides signifi cant protection against ESD damage. It is capable of withstanding discharges greater than 2.0 kV . Take all the standard precautions, normal for CMOS components. These include properly grounding personnel, tools, tables, and transport carriers that come in conact with unshielded parts. If these conditions are not, or cannot be met, keep the leads of the device shorted together or the parts in anti-static packaging

Soldering Considerations

The SCDQ554XX can be hand soldered with SN63 solder using a grounded iron set to $260^{\circ} \mathrm{C}$.
Wave soldering is also possible following these conditions: Preheat that does not exceed $93^{\circ} \mathrm{C}$ on the solder side of the PC board or a package surface temperature of $85^{\circ} \mathrm{C}$. Water soluble organic acid flux (except carboxylic acid) or resin-based RMA flux without alcohol can be used.
Wave temperature of $245^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with a dwell between 1.5 s to 3.0 s . Exposure to the wave should not exceed temperatures above $260^{\circ} \mathrm{C}$ for five seconds at 1.59 mm (0.063 ") below the seat ing plane. The packages should not be immersed in the wave.
The SCDQ554XR connects to an external connector receptacle which may be soldered before inserting the SCDQ554XR Display. n this way, only the connector is subject to the user's soldering process. The Molex 52418-0510 receptacle called out in the prod uct drawing can be used in solder reflow processes. See Molex for specifications

Post Solder Cleaning Procedures

The least offensive cleaning solution is hot D.I. water $\left(60^{\circ} \mathrm{C}\right)$ for ess than 15 minutes. Addition of mild saponifiers is acceptable. Do not use commercial dishwasher detergents.
For faster cleaning, solvents may be used. Exercise care in choos ing solvents as some may chemically attack the nylon package.
For further information refer to Appnotes 18 and 19 at
www.osram-os.com or in the current Short Form Catalogue. See Appnote 19, Table 2, "Displays-Group 2".

Optical Considerations

The 3.12 mm ($0.123^{\prime \prime}$) high character of the SCDQ554XX gives readability up to five feet. Proper filter selection enhances readabilty over this distance.
Using filters emphasizes the contrast ratio between a lit LED and the character background. This will increase the discrimination of different characters. The only limitation is cost. Take into consider ation the ambient lighting environment for the best cost/benefit ratio for filters.
Incandescent (with almost no green) or fluorescent (with almost no red) lights do not have the flat spectral response of sunlight. Plastic band-pass filters are an inexpensive and effective way to strengthen contrast ratios. The SCDQ5542X is a super-red display and should be matched with long wavelength pass filter in the 570 nm to 590 nm range. The SCDQ5541X/3X/4X should be matched with a yellow-green band-pass filter that peaks at 565 nm . For displays of multiple colors, neutral density grey filters offer the best compromise.
Additional contrast enhancement is gained by shading the displays. Plastic band-pass filters with built-in louvers offer the next step up in contrast improvement. Plastic filters can be improved urther with anti-reflective coatings to reduce glare. The trade-off is fuzzy characters. Mounting the filters close to the display reduces
his effect. Take care not to overheat the plastic filter by allowing for proper air flow.
Optimal filter enhancements are gained by using circular polarized, anti-reflective, band-pass filters. The circular polarizing further enhances contrast by reducing the light that travels through the filter and reflects back off the display to less than 1%.
Several filter manufacturers supply quality filter materials. Some of them are: Panelgraphic Corporation, W. Caldwell, NJ; SGL Homa ite, Wilmington, DE; 3M Company, Visual Products Division, St. Paul, MN; Polaroid Corporation, Polarizer Division, Cambridge, MA; Marks Polarized Corporation, Deer Park, NY, Hoya Optics, nc., Fremont, CA.
One last note on mounting filters: recessing displays and bezel assemblies is an inexpensive way to provide a shading effect in overhead lighting situations. Several Bezel manufacturers are: R.M.F. Products, Batavia, IL; Nobex Components, Griffith Plastic Corp., Burlingame, CA; Photo Chemical Products of California, Santa Monica, CA; I.E.E.-Atlas, Van Nuys, CA.

SCDQ554XX Interface to Siemens/Intel 8031 Microprocessor (using serial port in mode 0)

SCDQ554XX Interface to Siemens/Intel $\mathbf{8 0 3 1}$ Microprocessor (using one bit of parallel port as serial input)

Microprocessor Interface
The microprocessor interface is through the serial port, SPI port or one out of eight data bits on the eight bit parallel port and also control lines SDCLK and LOAD.

Power Up Sequence

Upon power up display will come on at random. Thus the display should be reset at power-up. The reset will set the Address Register to Digit 0 , User RAM is set to 0 (display blank) the Control Word is set to 0 (100% brightness with Lamp Test off) and the internal counters are reset

SCDQ5541P/Q/R, SCDQ5542P/Q/R, SCDQ5543P/Q/R, SCDQ5544P/Q/R

Loading Data into the Display
Use following procedure to load data into the display:

1. Power up the display.

Step A: software clear the display
3. Step B: Load the Control Word with the desired brightness level.
. Load the Digit Address into the display.
. Load display row and column data for the selected digit.
6. Repeat steps 4 and 5 for all digits.

Data Contents for the Display in a Horizontal Format " \uparrow AB \downarrow "

Step	D7	D6	D5	D4	D3	D2	D1	D0	Function
A	1	1	0	0	0	0	0	0	CLEAR
B (optional)	1	1	1	1	0	B	B	B	BRIGHTNESS SELECT
1	1	0	1	0	0	0	0	0	DIGIT D0 SELECT
2	0	0	0	0	0	1	0	0	ROW 0 D0 (\uparrow)
3	0	0	1	0	1	1	1	0	ROW 1 D0 (\uparrow)
4	0	1	0	1	0	1	0	1	ROW 2 D0 (\uparrow)
5	0	1	1	0	0	1	0	0	ROW 3 D0 (\uparrow)
6	1	0	0	0	0	1	0	0	ROW 4 D0 ($\uparrow)$
7	1	0	1	0	0	0	0	1	DIGIT D1 SELECT
8	0	0	0	0	0	1	0	0	ROW 0 D1 (A)
9	0	0	1	0	1	0	1	0	ROW 1 D1 (A)
10	0	1	0	1	1	1	1	1	ROW 2 D1 (A)
11	0	1	1	1	0	0	0	1	ROW 3 D1 (A)
12	1	0	0	1	0	0	0	1	ROW 4 D1 (A)
13	1	0	1	0	0	0	1	0	DIGIT D2 SELECT
14	0	0	0	1	1	1	1	0	ROW 0 D2 (B)
15	0	0	1	0	1	0	0	1	ROW 1 D2 (B)
16	0	1	0	0	1	1	1	0	ROW 2 D2 (B)
17	0	1	1	0	1	0	0	1	ROW 3 D2 (B)
18	1	0	0	1	1	1	1	0	ROW 4 D2 (B)
19	1	0	1	0	0	0	1	1	DIGIT D3 SELECT
20	0	0	0	0	0	1	0	0	ROW 0 D3 ($\downarrow)$
21	0	0	1	0	0	1	0	0	ROW 1 D3 ($\downarrow)$
22	0	1	0	1	0	1	0	1	ROW 2 D3 ($\downarrow)$
23	0	1	1	0	1	1	1	0	ROW 3 D3 ($\downarrow)$
24	1	0	0	0	0	1	0	0	ROW 4 D3 ($\downarrow)$

User Definable Character Set Examples＊

Upper and lower case alphabets

							${ }^{\text {Hex }}$ COLE		${ }_{\text {COOE }} \mathrm{HE}$		｜ HEX		${ }_{\text {COEX }}^{\text {Hex }}$		${ }_{\text {COOXE }}$		｜licx	
新范		ゅめゅ®ら				凹ャらの二		す弗碼						岗にら！\％		山あまざい		¢下ちゅ．
				\cdots	$\begin{aligned} & \hline 05 \\ & 30 \\ & 50 \\ & 50 \\ & 8 F \\ & \hline 8 F \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \cdots \cdots \\ \bullet \\ \hline \end{array}$	\square	$\because \because$	$\begin{array}{\|l\|l\|} \hline 17 \\ \hline 0 \\ 50 \\ 50 \\ 9 F \\ 9 F \\ \hline \end{array}$	\square	$\begin{aligned} & 1 \mathrm{~F} \\ & 30 \\ & 30 \\ & 70 \\ & 70 \\ & 90 \end{aligned}$				11 31 $5 F$ 51 91 91		\qquad	\because \vdots \because
离㟯		毋ぁ〒えए		めぁずが		แढ戸तら				¢ロォォ\＃		凹スらの山		せざらめロ		แ下：\％¢		¢
	$\begin{array}{\|l\|} \hline 01 \\ 21 \\ 41 \\ 41 \\ 71 \\ 8 E \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 13 \\ 34 \\ 38 \\ 5_{6}^{4} \\ 93 \\ \hline \end{array}$	$\because \bullet \bullet$	$\begin{array}{l\|l\|} \hline 10 \\ 30 \\ 50 \\ 70 \\ 9 F \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 11 \\ 35 \\ 55 \\ 71 \\ 91 \\ \hline \end{array}$		$\begin{aligned} & 11 \\ & 39 \\ & 35 \\ & 73 \\ & 91 \end{aligned}$		$\begin{aligned} & 0 E \\ & \hline \begin{array}{l} 31 \\ 51 \\ 71 \\ 71 \\ 8 E \end{array} \\ & \hline \end{aligned}$			$\because \cdots \cdot$	$\begin{array}{l\|} \hline 0 \\ 32 \\ 36 \\ 72 \\ 82 \\ \hline 80 \end{array}$	$\because \because$	$\begin{array}{\|l\|} \hline 11 \\ \hline 15 \\ 35 \\ \hline 74 \\ 92 \\ \hline 92 \\ \hline \end{array}$	
뜨응				88：40ํํㅜ		แらヲた！		毋ฐ \％\％		ゅ๕すき픈		こむすふ＝				Бఇtig\％		
	$\begin{array}{\|l\|l\|} \hline 0 \% \\ 30 \\ 4 E \\ 4 E \\ 91 \\ 9 E \end{array}$	$\cdots{ }^{\bullet \cdots}$	$\begin{array}{\|l\|l} \hline 17 \\ 24 \\ 24 \\ 64 \\ 84 \\ 84 \\ \hline \end{array}$	$\cdots{ }^{\bullet} \because \bullet$	$\begin{array}{\|l\|l\|} \hline 11 \\ 31 \\ 51 \\ 71 \\ 8 E \\ \hline 8 E \\ \hline \end{array}$	！$\quad \vdots$	$\begin{array}{\|l\|} \hline 11 \\ 31 \\ 51 \\ 54 \\ 84 \\ \hline 8 \end{array}$		$\begin{array}{\|l\|} \hline 11 \\ 35 \\ 55 \\ 78 \\ 91 \\ \hline \end{array}$		$\begin{array}{\|l\|l\|} \hline 11 \\ 24 \\ 4 A \\ 6 A \\ 91 \\ \hline \end{array}$		$\begin{array}{\|l\|l} \hline 11 \\ 2 A \\ 64 \\ 64 \\ 84 \\ \hline \end{array}$		$\begin{array}{\|l\|l} \hline 1 F \\ 22 \\ 44 \\ 68 \\ 9 F \\ \hline \end{array}$			
華苟		๕8\％¢ড		แセダ2\％		๕®จูฐ		ฐできが		இะ8ำ．		๕ะโัะ				あさます！		இษらえ8
	$\begin{array}{\|l\|l\|} \hline 00 \\ \hline 25 \\ 52 \\ 78 \\ \hline 80 \\ \hline \end{array}$		$\begin{array}{\|l\|l\|} \hline 10 \\ 30 \\ 5 E \\ 51 \\ 9 E \\ \hline 9 E \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \begin{array}{l} 2 F \\ 2 F \\ 50 \\ 70 \\ 8 F \\ \hline 8 F \\ \hline \end{array}{ }^{2} \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 21 \\ 21 \\ 4 F \\ 41 \\ 8 F \\ \hline 8 F \\ \hline \end{array}$	：	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} 00 \\ 2 E \\ 5 F \\ 50 \\ \\ 8 E \\ \hline \end{array} \\ \hline \end{array}$	\＃$\because \because$	$\begin{array}{\|l\|} \hline 04 \\ \hline 24 \\ 4 A \\ 7 c \\ 88 \\ \hline 8 \\ \hline \end{array}$		$\begin{aligned} & \hline 00 \\ & \hline 20 \\ & \hline 70 \\ & 78 \\ & \hline 8 \end{aligned}$		$\begin{array}{\|l\|l\|} \hline 10 \\ 50 \\ 56 \\ 79 \\ 91 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 04 \\ 20 \\ 20 \\ 64 \\ 84 \\ \hline 8 E \\ \hline \end{array}$	
㖣				แ®゙̧ャ8		இミ品え8		¢ \％\％¢		あむすがっ5		ญファสช8		แதさホ		あむすが，		凶せす®\％
	$\begin{array}{\|l\|} \hline 00 \\ 26 \\ 42 \\ 72 \\ 82 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 10 \\ 30 \\ 56 \\ 76 \\ 96 \\ \hline 96 \\ \hline \end{array}$	！．．	$\begin{aligned} & \hline 0 \\ & 24 \\ & 24 \\ & \hline 64 \\ & 8 E \\ & \hline 8 ⿷ \end{aligned}$	$\begin{aligned} & \because \\ & \because \\ & \bullet \end{aligned}$	$\begin{aligned} & \hline 00 \\ & 25 \\ & 51 \\ & 71 \\ & 91 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 00 \\ 36 \\ 59 \\ 91 \\ 91 \\ \hline \end{array}$		$\begin{array}{\|l\|l\|} \hline 00 \\ 25 \\ 571 \\ 71 \\ 8 E \\ \hline \end{array}$				$\begin{array}{l\|l\|} \hline 00 \\ 25 \\ 5 F \\ \hline 68 \\ 81 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 00 \\ 33 \\ 54 \\ 748 \\ 90 \\ \hline 90 \\ \hline \end{array}$	
苗茢		ゅらげさ\％		ฐ싸ำก8				めฐうส\％		ゅ®すぎ		ヵゅ¢ำ		ロロッチさ				
	$\begin{array}{\|l\|l} \hline 00 \\ 23 \\ 24 \\ 462 \\ 8 C \\ \hline 8 \end{array}$	$\bullet \bullet$	$\begin{array}{\|l\|} \hline 98 \\ 36 \\ 48 \\ 48 \\ 84 \\ \hline \end{array}$	$\because \cdot$	$\begin{array}{\|l\|} \hline 00 \\ 32 \\ 52 \\ 52 \\ 80 \\ \hline 80 \end{array}$		$\begin{array}{\|c\|} \hline \text { oo } \\ 51 \\ 5 A \\ 54 \\ 84 \\ \hline \end{array}$	$: .:$			$\begin{array}{\|l\|l} \hline \begin{array}{l} 02 \\ 32 \\ 3 C \\ \text { 6c } \\ 92 \\ \hline \end{array} \\ \hline \end{array}$		$\begin{aligned} & \hline 00 \\ & 31 \\ & 34 \\ & 64 \\ & 98 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l} \hline 00 \\ 3 E \\ 44 \\ 68 \\ 9 E \\ \hline \end{array}$			

Numerals and punctuation

	${ }_{\text {cox }}^{\text {Hex }}$		${ }_{\text {Hex }}^{\text {HeOE }}$				${ }_{\text {COOE }}^{\text {Hex }}$		${ }_{\text {cox }}^{\text {Hex }}$		${ }_{\text {COOE }}^{\text {Hex }}$		${ }_{\text {COPK }}^{\text {COEX }}$		${ }_{\text {cox }}^{\text {Hex }}$		${ }_{\text {cox }}^{\text {Hex }}$	
咹		แャワセ\％\％						¢¢冖\％¢		あもむがあ		ฉะセ\％\％				毋ఇ゙げァワ		
	$\begin{array}{\|l\|} \hline 08 \\ 35 \\ 75 \\ 79 \\ 8 E \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 04 \\ 20 \\ 44 \\ \hline 64 \\ 8 E \end{array}$		$\begin{array}{\|l\|} \hline 11 \\ \hline 21 \\ 46 \\ 88 \\ 98 \\ \hline \end{array}$		$\begin{aligned} & 1 E \\ & \hline \begin{array}{l} 1 E \\ 21 \\ 4 E \\ 61 \\ 9 E \end{array}, ~ \end{aligned}$		$\begin{array}{l\|l\|} \hline 06 \\ 2 A \\ \text { SF } \\ 68 \\ 82 \\ \hline 82 \end{array}$				$\begin{array}{\|c\|} \hline 66 \\ 28 \\ \hline 7 \\ \hline 1 \\ 8 E \\ \hline 1 \end{array}$		$\begin{aligned} & 1 F \\ & \hline 22 \\ & \hline 24 \\ & \hline 68 \\ & 88 \\ & \hline 8 \end{aligned}$		$\begin{array}{\|l\|} \hline 0 E \\ 3 E \\ \hline 4 E \\ 71 \\ 8 E \\ \hline \end{array}$	
傜						あたぢせ\％		ゅゅ九\％\％8										¢ミษร
	$\begin{array}{\|l\|} \hline 0 \\ 34 \\ 45 \\ 42 \\ 8 C \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 0 A \\ 3 A \\ 4 A \\ 8 A \\ 8 A \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 0 \\ 34 \\ 44 \\ 65 \\ 95 \\ 9 E \end{array}$		$\begin{aligned} & \hline 06 \\ & 29 \\ & 56 \\ & 58 \\ & 96 \\ & 96 \end{aligned}$		$\begin{array}{\|l\|l\|} \hline 19 \\ 3 A \\ \hline 68 \\ 9 B \\ 93 \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 08 \\ 34 \\ 48 \\ 70 \\ 8 D \\ \hline \end{array}$	$\because \because \cdot$	$\begin{array}{\|l\|l} \hline 0 c \\ 2 c \\ 26 \\ \hline 68 \\ 80 \\ \hline \end{array}$		$\begin{aligned} & \hline 02 \\ & 24 \\ & 44 \\ & 464 \\ & 82 \\ & \hline 8 \end{aligned}$		$\begin{array}{\|l\|} \hline 08 \\ 24 \\ 24 \\ \hline 68 \\ 88 \\ \hline \end{array}$	\bullet
猺		¢ొ¢		あずらさす		ฉธ๐ษกำ		あすきざす		\＆\％ษワ8		Бฐ\％\％ㅇ		¢8¢จำ		¢ャワำ8		¿®⿱二⿺𠃊⿻丷木斤丶
	$\begin{aligned} & 0 c \\ & 2 c \\ & 28 \\ & 88 \\ & 84 \\ & 80 \end{aligned}$	$\because:$	$\begin{aligned} & 04 \\ & \begin{array}{l} 04 \\ 24 \\ 54 \\ 64 \\ 84 \end{array} \\ & \hline \end{aligned}$		$\begin{aligned} & 90 \\ & 20 \\ & 96 \\ & 94 \\ & 88 \end{aligned}$		$\begin{aligned} & 00 \\ & 20 \\ & 50 \\ & 50 \\ & 80 \\ & 80 \end{aligned}$	\bullet	$\begin{aligned} & \hline 00 \\ & 20 \\ & 20 \\ & 60 \\ & 8 C \\ & \hline \end{aligned}$	：$:$	$\begin{aligned} & 92 \\ & 24 \\ & 48 \\ & 48 \\ & 90 \end{aligned}$	$\bullet \bullet^{\bullet}$	$\begin{aligned} & 94 \\ & 24 \\ & 24 \\ & { }_{20} 0 \\ & 88 \\ & 80 \end{aligned}$	！	$\begin{aligned} & \text { 2A } \\ & 20 \\ & 40 \\ & 80 \\ & 80 \end{aligned}$	：：	$\begin{array}{l\|} \hline 07 \\ 24 \\ 44 \\ 44 \\ 87 \\ 87 \end{array}$	
x宮		¢®\％ボ		お下㐌ス8				ぁぁぁえら		ゅセロx̊\％		毋ャセロロ8						
	$\begin{aligned} & \hline 10 \\ & 28 \\ & 44 \\ & 62 \\ & 81 \\ & \hline \end{aligned}$	\bullet	$\begin{array}{l\|} \hline 1 \mathrm{C} \\ 24 \\ 24 \\ \hline 64 \\ 94 \\ \hline 9 \end{array}$		$\begin{array}{l\|l\|} \hline 0 E \\ 35 \\ 77 \\ 8 E \\ \hline 8 \end{array}$		$\begin{array}{\|l\|} \hline 00 \\ 20 \\ 40 \\ 90 \\ 90 \\ 9 F \end{array}$	－•••	$\begin{aligned} & \hline 0 \\ & \hline 20 \\ & 40 \\ & 80 \\ & 8 C \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 0 \\ & \hline 20 \\ & 20 \\ & 64 \\ & 64 \\ & 88 \\ & \hline \end{aligned}$	\because	$\begin{array}{l\|} \hline 02 \\ 24 \\ 24 \\ 88 \\ 84 \\ 82 \end{array}$		$\begin{aligned} & 00 \\ & 3 F \\ & 40 \\ & 70 \\ & 80 \end{aligned}$		$\begin{array}{l\|} \hline 08 \\ 24 \\ 42 \\ 42 \\ 64 \\ 88 \end{array}$	
ㅈㅜㅡ응						ロミ思む8		¢๐ะฐล8								ఇ尺，¢ ¢		
	$\begin{aligned} & 06 \\ & 32 \\ & 32 \\ & 64 \\ & 88 \\ & 88 \end{aligned}$		$\begin{aligned} & \begin{array}{l} 06 \\ 28 \\ 48 \\ 84 \\ 86 \end{array} \\ & 8 \end{aligned}$	\because	$\begin{aligned} & 0 c \\ & 24 \\ & { }_{42} \\ & 84 \\ & 80 \end{aligned}$		$\begin{aligned} & 04 \\ & 24 \\ & 40 \\ & 64 \\ & 84 \\ & 84 \end{aligned}$		$\begin{aligned} & 11 \\ & 2 A \\ & 48 \\ & 8 E \\ & 8 E \end{aligned}$				$\begin{aligned} & 204 \\ & 24 \\ & 50 \\ & 50 \\ & 80 \\ & 80 \end{aligned}$	$\bullet .$	$\begin{aligned} & 08 \\ & 35 \\ & 42 \\ & 60 \\ & 80 \end{aligned}$	$\bullet \cdot \cdot$		

＊CAUTION：No more than 128 LEDs＂on＂at one time at 100% brightness

User Definable Character Set Examples＊（continued）
Scientific notations，ect．

	$\underset{\substack{\text { Hex } \\ \text { CoOE }}}{ }$		${ }_{\text {Hex }}^{\operatorname{Hex}}$		$\underbrace{\text { Hex }}_{\text {cox }}$		$\underbrace{\text { Hex }}_{\text {Hex }}$		$\left.\right\|_{\text {coix }} ^{\text {Cix }}$		$\left.\right\|_{\substack{\text { cox } \\ \text { cox }}}$		${ }_{\text {cimx }}^{\text {Heod }}$		${ }_{\text {cox }}^{\text {Hex }}$		${ }_{\text {coide }}^{\text {Hex }}$	
		ฐษแแ\％		ฐษฐะะ				があるすこ		ఇセสั\％8		あにらい		แャロัธ		2゙ャロロ\％		\％セ8
	$\begin{aligned} & 06 \\ & \text { of } \\ & \text { 感 } \\ & 88 \end{aligned}$	$\because: \because$									$\begin{aligned} & 00 \\ & \begin{array}{l} 32 \\ 52 \\ 50 \\ 180 \end{array} \\ & \hline 80 \end{aligned}$		$\begin{aligned} & 06 \\ & \substack{38 \\ 56 \\ 96 \\ 98} \\ & \hline \end{aligned}$					\therefore ○
名		89		䛧		ส5		No		ฐฐษ\％		\＄వtss		2\％ 8 \％		ม．4ษํ		\％
					$\begin{aligned} & 10 \\ & 28 \\ & 28 \\ & 64 \\ & 84 \\ & 94 \end{aligned}$		$\begin{gathered} { }_{c}^{29} \\ 48 \\ 89 \end{gathered}$	\vdots ！	$\begin{aligned} & 01 \\ & \frac{0}{26} \\ & \frac{8}{84} \\ & 84 \end{aligned}$									
¢						※ざさス8		あをき出を				あるこちさ		¢さ		ฐะロ\％		จ\％
			$\begin{array}{\|l\|} 18 \\ 28 \\ 48 \\ 40 \\ 80 \\ 80 \end{array}$	\cdots	$\begin{array}{\|l} 126 \\ 26 \\ 48 \\ 48 \\ 80 \end{array}$		$\begin{array}{\|l\|} \substack{887 \\ 807 \\ 80} \end{array}$		$\begin{array}{\|c\|c} \substack{06 \\ \text { an } \\ \text { git } \\ 80} \\ 8 \end{array}$	－．$:$ ．			$\begin{array}{\|l} 10 \\ 36 \\ 50 \\ 80 \\ 80 \\ 80 \end{array}$	：$:$	$\begin{aligned} & 06 \\ & 28 \\ & 48 \\ & 48 \\ & 88 \\ & 88 \\ & \hline \end{aligned}$		$\begin{aligned} & 04 \\ & \text { of } \\ & \text { en } \\ & 80 \\ & 80 \end{aligned}$	
区		\％ちゃへ\％		\％		ฐจํ．5						碞ち年8		ษษษษ				さぁ\％ส
						$\because \because: \cdot$				$\because:::$				：：：：8：				
ช		さる号年		ざゅMさも				ダイホ ¢ \％				2888న2		5		ษษษฯะ		
					$\begin{aligned} & 17 \\ & \frac{15}{35} \\ & 517 \\ & 9 F \\ & 9 F \end{aligned}$				$\begin{aligned} & 0 \\ & \left.\begin{array}{l} 35 \\ 35 \\ 45 \\ 8 B \end{array} \right\rvert\, \end{aligned}$		$\begin{aligned} & 15 \mathrm{tan} \\ & 56 \\ & 50 \\ & 95 \\ & 95 \end{aligned}$							
¢ ¢		85¢9\％		209\％®		๕8จฺ5		ธธรัะ		5¢5¢4								
	$\begin{aligned} & 00 \\ & 20 \\ & 48 \\ & 780 \\ & 98 \end{aligned}$		$\begin{aligned} & 00 \\ & 30 \\ & g c_{3} \\ & 87 \\ & 87 \end{aligned}$		$\begin{array}{\|l\|l} \hline 00 \\ 20 \\ 20 \\ 60 \\ 80 \\ 83 \end{array}$	－•	$\begin{aligned} & 20 \\ & 20 \\ & 40 \\ & 90 \\ & 9 F \end{aligned}$	．．：8：			$\begin{aligned} & 0 c \\ & 3 c \\ & 5 c \\ & 9 c \\ & 9 c \end{aligned}$		$\begin{array}{\|c\|} \hline 15 \\ 26 \\ \hline 64 \\ 84 \\ 84 \\ \hline 8 \end{array}$					

Foreign characters

	${ }_{\text {cox }}^{\text {HEX }}$		${ }_{\text {cox }}^{\text {Hex }}$		\mid		$\|$HEX COOE		${ }_{\text {Hex }}^{\text {COOE }}$		$\left.\right\|_{\text {MEX }} ^{\text {HCOE }}$		$\|$HEX COOE		$\left\lvert\, \begin{aligned} & \text { HEX } \\ & \text { COOE }\end{aligned}\right.$		${ }_{\substack{\text { Hex }}}^{\text {COEE }}$	
讋		あざ゚め\％				毋โษれ！				ヵタ\％ษฐ̊		๕ธずm		¥ド等ส8		毋スโ๓ッu		
	$\begin{aligned} & \hline 1 \mathrm{~F} \\ & \hline 21 \\ & 51 \\ & 52 \\ & 84 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 1 F \\ & 21 \\ & 46 \\ & 46 \\ & 88 \\ & \hline 88 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline 01 \\ 26 \\ 46 \\ 46 \\ 82 \\ \hline \end{array}$	$\because \because$			$\begin{array}{\|l\|l} \hline 00 \\ 3 F \\ 34 \\ \hline 64 \\ 94 \\ 9 F \end{array}$		$\begin{aligned} & \hline 02 \\ & 3 F \\ & 46 \\ & 46 \\ & 92 \\ & \hline 2 \end{aligned}$		$\begin{array}{\|l\|l} \hline \text { o8 } \\ 39 \\ 49 \\ 49 \\ 88 \\ 8 B \\ \hline \end{array}$	$\because \because$	17 21 24 45 67 80			
讋												ฐロจํㅃ％		๕セチ枵				
	$\begin{aligned} & \begin{array}{l} 08 \\ 39 \\ 49 \\ 99 \\ 99 \end{array} \end{aligned}$	－\because ••	$\begin{aligned} & \frac{18}{3 F} \\ & 34 \\ & 44 \\ & 84 \end{aligned}$	$\left\lvert\, \begin{array}{\|c\|} \bullet \bullet: \cdot \\ \bullet \bullet \bullet \end{array}\right.$			$\begin{aligned} & \hline 8 \\ & \hline 2 F \\ & 25 \\ & 52 \\ & 62 \\ & 82 \\ & \hline \end{aligned}$	$\because \because$	$\begin{aligned} & 0 F \\ & \hline 21 \\ & 41 \\ & 41 \\ & 97 \\ & 97 \end{aligned}$		$\begin{aligned} & 0 A \\ & 3 F \\ & 3 A \\ & 4 A_{1} \\ & 8 C \\ & 8 C \end{aligned}$		19 29 52 62 92 9		$\begin{aligned} & \hline \text { of } \\ & 29 \\ & 59 \\ & 63 \\ & 8 \mathrm{Cl} \\ & \hline \end{aligned}$	$\because \because:$	$\begin{array}{\|l\|} \hline 01 \\ 3 E \\ 42 \\ \hline 7 \\ 86 \\ \hline \end{array}$	
靼				இセセッめす		แすプス8				あたら二す		あたが心年						¢¢¢ロฐ5
	15 35 35 56 68 8.		$\begin{array}{\|l\|l\|} \hline 00 \\ 20 \\ 56 \\ 56 \\ 98 \\ 98 \end{array}$		$\begin{array}{\|l\|} \hline 08 \\ 28 \\ 46 \\ 6 A \\ 90 \\ \hline \end{array}$		$\begin{aligned} & 04 \\ & 35 \\ & 44 \\ & 46 \\ & 98 \\ & \hline 98 \\ & \hline \end{aligned}$	$\ldots{ }^{\ldots}$	$\begin{aligned} & \hline 0 \mathrm{EF} \\ & 20 \\ & 400 \\ & 60 \\ & 90 \end{aligned}$		$\begin{aligned} & \hline 1 \mathrm{~F} \\ & 24 \\ & 4 A \\ & 44 \\ & 64 \\ & \hline 9 A \\ & \hline \end{aligned}$			\cdots	$\begin{aligned} & 04 \\ & { }_{24}^{4} \\ & 48 \\ & 68 \\ & 90 \\ & \hline 90 \end{aligned}$	－	$\begin{aligned} & \hline 04 \\ & \hline 251 \\ & 511 \\ & 79 \\ & 91 \end{aligned}$	$\because \because$
垲				¢下らヶ\％		毋ゼ洼\％		ฐธณన\％		毋๐ษกำ		あ世約めツ		あ下ら年す				あたt：
	$\begin{aligned} & 10 \\ & 3 F \\ & 30 \\ & 70 \\ & 8 \mathrm{~F} \end{aligned}$	：．．．．	$\begin{aligned} & 1 \mathrm{~F} \\ & 21 \\ & 21 \\ & 41 \\ & 8 \mathrm{Cl} \\ & 8 \mathrm{C} \end{aligned}$		$\begin{array}{\|l\|} \hline 0 E \\ 20 \\ 40 \\ 40 \\ 60 \\ 8 F \end{array}$		$\begin{aligned} & 04 \\ & 28 \\ & 28 \\ & { }^{281} \\ & 7 \% \\ & 81 \end{aligned}$	$\because \bullet$	$\begin{array}{\|c\|} \hline 01 \\ 21 \\ 4 A \\ 64 \\ 8 A \\ 8 A \\ \hline \end{array}$	$\bullet \bullet$	$\begin{aligned} & 1 F \\ & \hline 28 \\ & 5 F \\ & 58 \\ & 87 \\ & \hline 8 \end{aligned}$		1 E 22 42 62 $9 F$ 9 F				$\begin{array}{\|l\|} \hline 0 E \\ 20 \\ 56 \\ 61 \\ 8 E \\ 8 E \end{array}$	\cdots
培		比尔岛8				ฐセ냈ㅇ				毋セぜらす				岗下殅め！				\％セ゚ざら
	$\begin{aligned} & \hline 12 \\ & 32 \\ & 52 \\ & 64 \\ & 88 \\ & \hline 8 \end{aligned}$		$\begin{array}{\|l\|l\|} \hline 04 \\ 34 \\ 54 \\ 75 \\ 96 \\ \hline \end{array}$	：	$\begin{array}{\|l\|} \hline 1 E \\ 25 \\ 4 F \\ 44 \\ 48 \\ 8 F \\ \hline 8 F \\ \hline \end{array}$		$\begin{aligned} & \hline 0 \mathrm{~F} \\ & 34 \\ & 5 \mathrm{~F} \\ & 74 \\ & 97 \\ & \hline 97 \\ & \hline \end{aligned}$		$\begin{array}{\|l\|l\|} \hline 9 \mathrm{FF} \\ 30 \\ \text { 34 } \\ 69 \\ 989 \end{array}$						$\begin{aligned} & \hline 00 \\ & 28 \\ & \hline 57 \\ & \hline 78 \\ & 88 \\ & \hline 8 \end{aligned}$		$\begin{array}{\|l\|} \hline 08 \\ 24 \\ 4 E \\ 72 \\ \hline 8 F \\ \hline \end{array}$	
絻		¢โなざ		毋セษ\％ก8		ฐะเุจะ		納年成8		ロミダッ		毋らずゥ		๕®らヵロ				
	$\begin{aligned} & 0 A \\ & 2 E \\ & 51 \\ & \hline 1 \\ & 91 \end{aligned}$	$\begin{gathered} : \because \\ : \cdots! \end{gathered}$	$\begin{array}{\|l\|l} \hline 02 \\ 24 \\ 44 \\ 64 \\ 8 E \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline 24 \\ 2 A \\ 4 E \\ 47 \\ 8 E \\ 8 E \end{array}$	\therefore－		$\because \bullet$	$\begin{array}{\|l\|} \hline 08 \\ 24 \\ 54 \\ 71 \\ 8 E \\ \hline 8 \end{array}$		$\begin{array}{\|l\|} \hline 02 \\ \hline 24 \\ 51 \\ 71 \\ 8 E \\ \hline \end{array}$		$\begin{aligned} & \hline 4 \\ & 24 \\ & 24 \\ & 51 \\ & 71 \\ & 8 E \end{aligned}$					

＊CAUTION：No more than 128 LEDs＂on＂at one time at 100% brightness．

Revision History: 2006-05-12
Previous Version: 2006-01-23

Page	Subjects (major changes since last revision)	Date of change
all	Lead free device	$2006-01-23$

Published by
OSRAM Opto Semiconductors GmbH
Wernerwerkstrasse 2, D-93049 Regensburg
www.osram-os.com
© All Rights Reserved.

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances. For information on the types in question please contact our Sales Organization.
If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.
Components used in life-support devices or systems must be expressly authorized for such purpose! Critical components ${ }^{1)}$ may only be used in life-support devices or systems ${ }^{2}$) with the express written approval of OSRAM OS.
${ }^{1)}$ A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
${ }^{2)}$ Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

