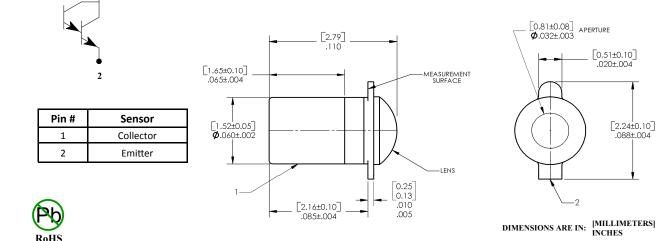
OP300SL Series

Features:

- Narrow receiving angle
- Variety of sensitivity ranges
- Enhanced temperature range
- PCBoard mounting
- Mechanically and spectrally matched to OP123 and OP223 LEDs

Description:

Each device in this series is a NPN silicon photodarlington in a hermetically sealed pill package with a narrow receiving angle that provides excellent on-axis coupling. Photodarlingtons are normally used in applications with low light signal levels, where more current gain is needed than phototransistors can provide.


Components in the OP300 series are mechanically and spectrally matched to the OP123 and OP223 series.

<u>Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data, and to</u> <u>Application Bulletin 202 for pill-type soldering to PCBoard.</u>

Applications:

- Non-contact reflective object sensor
- Assembly line automation
- Machine automation
- Machine safety
- End of travel sensor
- Door sensor

Ordering Information								
Part Number	Sensor	Light Current I _{C(ON)} (mA) Min / Max	Input Power E _E (mW/cm ²)	Viewing Angle				
OP300SL		0.8 / NA						
OP301SL		0.8 / 2.4	1.0 with 2870°					
OP302SL	Darlington	1.8 / 5.4	K	35°				
OP303SL	Darlington	3.6 / 12.0	or 0.4 with	35				
OP304SL		7.0 / 21.0	890nm					
OP305SL		14.0 / NA						

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OP300SL Series

Electrical Specifications

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)				
Collector-Emitter Voltage	15.0 V			
Emitter-Collector Voltage	5.0 V			
Storage Temperature Range	-65° C to +150° C			
Operating Temperature Range	-65° C to +125° C			
Soldering Temperature (5 seconds with soldering iron)	260° C ⁽¹⁾⁽²⁾			
Power Dissipation	50 mW ⁽³⁾			
Continuous Collector Current	50 mA			

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	ΤΥΡ	MAX	UNITS	TEST CONDITIONS
I _{c(on)} ⁽⁴⁾	On-State Collector Current OP300SL OP301SL OP302SL OP303SL OP304SL OP305SL	0.8 0.8 1.8 3.6 7.0 14.0	- - - -	- 2.4 5.4 12.0 21.0 -	mA	V _{CE} = 5.0 V, E _E = 1.0 or 0.4 mW/cm ²⁽⁵⁾
I _{CEO}	Collector-Dark Current	-	-	1.0	μA	$V_{CE} = 10 V, E_{E} = 0$
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage	15.0	-	-	V	I _c = 100 μA
V _{(BR)ECO}	Emitter-Collector Breakdown Voltage	5.0	-	-	V	I _E = 100 μA
V _{CE(SAT)} ⁽⁴⁾	Collector-Emitter Saturation Voltage OP300SL, OP301SL OP302SL through OP305SL		-	1.1 1.1	v	$I_c = 0.4 \text{ mA}, E_E = 1.0 \text{ or } 0.4 \text{ mW/cm}^{2(5)}$ $I_c = 1.0 \text{ mA}, E_E = 1.0 \text{ or } 0.4 \text{ mW/cm}^{2(5)}$

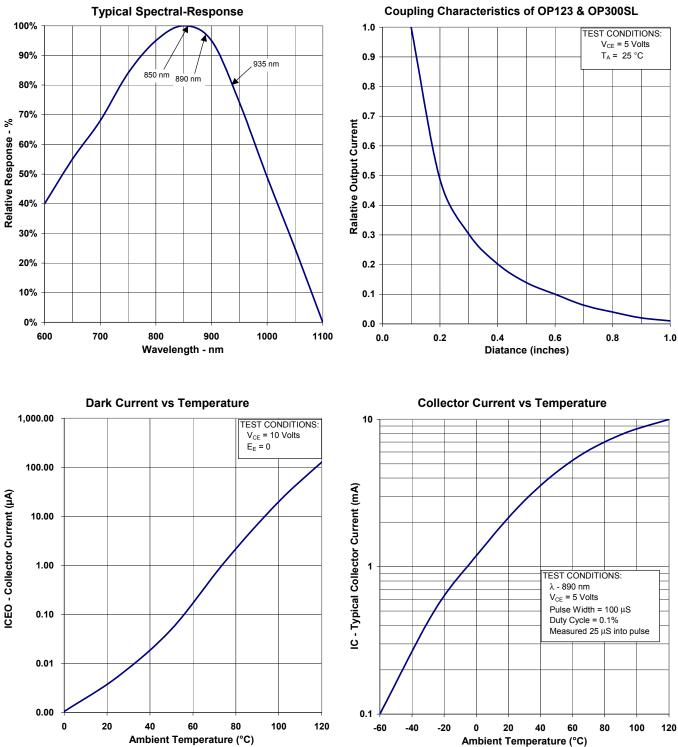
Notes:

(1) Refer to Application Bulleting 202, which discusses proper techniques for soldering pill-type devices to PCBoards.

(2) No clean or low solids. RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.

(3) Derate linearly 0.5 mW/° C above 25° C.

(4) Junction temperature maintained at 25° C.

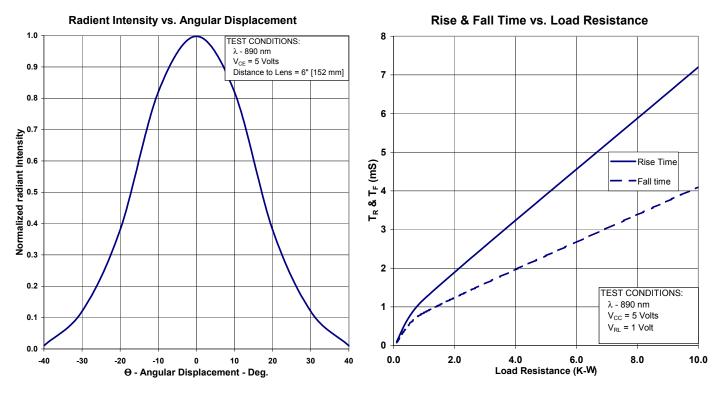

(5) Light source is an unfiltered tungsten bulb operating at CT = 2870° K at $E_E = 1.0 \text{ mW/cm}^2$ or 890nm at $E_E = 0.4 \text{ mW/cm}^2$.

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

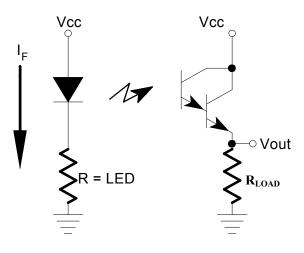
OP300SL Series

Performance

onnunce


General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.


OP300SL Series

Performance

Switching time Circuit

The light source is a pulsed LED with a rise time of less than 500 nS. The LED output is adjusted for $I_c = 0.8$ mA.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.