
Standalone AVR Chip Programmer
Created by Ladyada

Last updated on 2013-08-07 03:00:50 PM EDT

2
3
4
9

Guide Contents

Guide Contents
Overview
Assembly
Changing the Code

© Adafruit
Industries

http://learn.adafruit.com/standalone-avr-chip-programmer Page 2 of 9

Overview

We previously showed how to use an Arduino + protoshield + ZIF socket to make a
programmer that can burn a lot of Arduino bootloaders (http://adafru.it/ckx). In our blog
comments a user commented that he had written a stand-alone program for the Arduino called
Optiloader (http://adafru.it/b17948) that is similar and might be worth checking out.

What Optiloader does is kinda of neat. (http://adafru.it/cky) Instead of having a computer that
talks thru the Arduino to a chip for programming, instead the Arduino itself programs the
chip. This means you can program chips without having a computer involved. The good news
about this technique is that it is incredibly fast, you can program chips 10x faster than with a
computer and without having to type anything in. The only downside is that its very specialized,
once you set it up the programmer can only do one chip (in general) with one HEX file. If you
want to update it, it can be a little effort to reconfigure.

However, if you are burning a lot of chips, this can be a real blessing. We can program and burn
an Arduino bootloader chip in about 5 seconds. Normally with a computer you're talking 40
seconds or so. Another nice thing is that you can make it very clear when a failure has occured.
Instead of reading text on a computer screen - a piezo will beep once on success. We've
found that audio feedback is way more likely to be noticed than visual feedback.

We adapted Optiloader to be more flexible - so it can program any AVR with any HEX
file. (http://adafru.it/ckz) While you don't need to use an Arduino for this, we have a lot of
Arduino's kicking around here so they make a handy base.

This code can be adapted for programming any AVR that can be ISP programmed (this is like
99% of AVRs) but in this example the wiring will be for the Atmega8/48/88/168/328 series and
the code will be the Adaboot bootloader. If you have other chips you are programming, check
the datasheet for how to wire VCC, Gnd, MISO, MOSI, SCK, RST and XTAL1 (if you need external
clocking).

We have a report that this procedure does not work with Arduino 1.5.2. Use theWe have a report that this procedure does not work with Arduino 1.5.2. Use the
latest mainstream Arduino release instead!latest mainstream Arduino release instead!

© Adafruit
Industries

http://learn.adafruit.com/standalone-avr-chip-programmer Page 3 of 9

http://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduinoisp
http://www.adafruit.com/blog/2011/08/25/tutorial-arduino-hacks-burning-bootloader-chips-using-an-arduino/
http://www.youtube.com/watch?v=YBFUGre0hY4
https://github.com/adafruit/Standalone-Arduino-AVR-ISP-programmer

Assembly

To complete this tutorial you will need…

An Arduino (http://adafru.it/50)
A proto shield kit (http://adafru.it/51)
28-pin ZIF (zero-insertion force) socket (http://adafru.it/382)
A piezo (http://adafru.it/160)
Some wire (http://adafru.it/289)
Blank ATmega328P (http://adafru.it/cuV) (that you will program)

First up, place the ZIF socket on the proto shield like so:

Solder all 28 pins for a solid connection!

© Adafruit
Industries

http://learn.adafruit.com/standalone-avr-chip-programmer Page 4 of 9

http://www.adafruit.com/products/50
https://www.adafruit.com/products/51
https://www.adafruit.com/products/382
https://www.adafruit.com/products/160
https://www.adafruit.com/products/289
http://www.adafruit.com/partfinder/microcontroller?s%5B%5D=atmega328p

Solder the following wires to the ZIF socket

Pin 1 to digital 10 - Blue (this wire connects underneath to the ZIF socket so make sure to
'jumper it so it solders directly to the ZIF pin, see the photos below)
Pin 7 to 5V - Red
Pin 8 to Ground - Black
Pin 9 to digital 9 - Gray
Pin 17 to digital 11 - Brown
Pin 18 to digital 12 - Orange
Pin 19 to digital 13 - Yellow
Pin 20 to +5V - Red
Pin 22 to Ground - Black

Follow the protoshield tutorial to solder in the Red LED into LED1 position, Green LED into
LED2 position. Also solder in the two 1.0K resistors next to the LEDs. We'll use the LEDs as

© Adafruit
Industries

http://learn.adafruit.com/standalone-avr-chip-programmer Page 5 of 9

indicators. Then solder a wire from the LED2 breakout (white) to analog 0 and a wire from LED1
breakout (white) to digital 8.

Next add S1switch which you will press to start the programming process. You can just solder
a wire (yellow) from the breakout near S1 to Analog 1.

We also soldered in a Piezo beeper, to give us feedback. One side is soldered into Analog 3
the other side is soldered to the ground rail right next to the analog breakouts.

Finally, you'll need to solder on the header to allow the shield to be placed on, break the 0.1"
male header and place it into the Arduino sockets. Then place the shield above on top to
solder it in place.

© Adafruit
Industries

http://learn.adafruit.com/standalone-avr-chip-programmer Page 6 of 9

If you need to see what the bottom looks like, it will be something like this. Except ours has a
ton of rosin on it because we ended up moving the socket for this prototype, so that brown
rosin stuff probably wont be on yours!

Thats it!

Next, download the codebase from github. (http://adafru.it/ckz) Make a sketch floader called
adaLoader in your Arduino sketch collection and copy the pde and helper files in. Restart the
IDE and open up that sketch, compile it and upload it to your Arduino.

We have one report that the IDE v1.0.1 does not work with this sketch. Please tryWe have one report that the IDE v1.0.1 does not work with this sketch. Please try
v23 or v1.0 if you have problems. You only need to use that version for uploadingv23 or v1.0 if you have problems. You only need to use that version for uploading
the sketch to the programmer Arduino, the chips will work with any version of thethe sketch to the programmer Arduino, the chips will work with any version of the
IDEIDE

© Adafruit
Industries

http://learn.adafruit.com/standalone-avr-chip-programmer Page 7 of 9

https://github.com/adafruit/Standalone-Arduino-AVR-ISP-programmer

Now you can use it, very easy…just insert the chip, lock it down and press the button. While
programming, the green LED is lit. When done, the piezo will beep once. If the red LED is lit, a
problem occured.

Once you have programmed the chip with our default code you can use it in an existing Arduino
board, compatible, or breadboard style. You will need a 16 MHz crystal on the clock pins, so
don't forget it!

We also have a report that this procedure does not work with Arduino 1.5.2. Use theWe also have a report that this procedure does not work with Arduino 1.5.2. Use the
latest mainstream Arduino release instead!latest mainstream Arduino release instead!

The standalone sketch will only program ATmega328P chips and it will program themThe standalone sketch will only program ATmega328P chips and it will program them
with our "adaBoot" Bootloader not Optiboot! Select Duemilanove with 328 whenwith our "adaBoot" Bootloader not Optiboot! Select Duemilanove with 328 when
uploading to Arduinos that use the bootloaded chip, even if you are using it in anuploading to Arduinos that use the bootloaded chip, even if you are using it in an
UNO branded Arduino!UNO branded Arduino!

© Adafruit
Industries

http://learn.adafruit.com/standalone-avr-chip-programmer Page 8 of 9

Changing the Code

Unlike the specialized Optiloader, this program can be adapted to any AVR and any size HEX
file as long as you can fit the HEX into the flash of the microcontroller. Since HEX files are ascii,
they basically 2x the size of the code itself. So if you have a 500 byte program, the HEX will be
1K. The sketch itself takes about 10KB so you have approximately 20KB left for the HEX which
is good for about 10KB of flash to burn. This isn't tons but I suppose if you wanted to port the
program to the Mega then you could fit up to 128KB of flash for massive chips.

You can paste your new HEX into images.cpp (http://adafru.it/ckA) . You'll need also to set the
bottom two bytes of the signature (third entry), and the fuses you want to set before you start
programming, and the fuses you want to set after programming (in case the lock bits have
changed). The fuse mask is used because not all fuse bits are used so if you write a zero to an
unused bit (as avrdude prefers to do) it may be read back as a 1 which can cause verification
errors. Next is the size of the chip flash in bytes and the size of a flash page for the chip (you
may need to research the datasheet for this number). The first two arguments (name of flash
and name of chip) are for your records, they arent really used by the program itself.

After you've adjusted those, go back to the main pde sketch and update:

So that the size of the flash page buffer is larger if necessary.

Please note that while this tutorial works and we're very confident that this project can be
adapted to other chips making sure that you have all the above set correctly is not
trivial and will take some trial and error as well as expertise in reading
datasheets and the avrdude.conf file so we can't provide one-on-one technical
support in helping you adapt the tutorial to your particular chip and code.
Please endeavor to work it out on your own!

Of course, after you load a new firmware in, be sure to check that it did in fact burn it correctly
using a known good programmer.

byte pageBuffer[128]; /* One page of flash */

© Adafruit Industries Last Updated: 2013-08-07 03:00:51 PM EDT Page 9 of 9

https://github.com/adafruit/Standalone-Arduino-AVR-ISP-programmer/blob/master/images.cpp

	Guide Contents
	Overview
	Assembly
	Changing the Code

